Scalars

Scalar types represent concrete values at the leaves of a query. For example in the following query the name field will resolve to a scalar type (in this case it’s a String type):

{
  user {
    name
  }
}
{
  "data": {
    "user": {
      "name": "Patrick"
    }
  }
}

There are several built-in scalars, and you can define custom scalars too. (Enums are also leaf values.) The built in scalars are:

Fields can return built-in scalars by using the Python equivalent:

import datetime
import decimal
import uuid
import strawberry
 
 
@strawberry.type
class Product:
    id: uuid.UUID
    name: str
    stock: int
    is_available: bool
    available_from: datetime.date
    same_day_shipping_before: datetime.time
    created_at: datetime.datetime
    price: decimal.Decimal
    void: None
type Product {
  id: UUID!
  name: String!
  stock: Int!
  isAvailable: Boolean!
  availableFrom: Date!
  sameDayShippingBefore: Time!
  createdAt: DateTime!
  price: Decimal!
  void: Void
}

Scalar types can also be used as inputs:

import datetime
import strawberry
 
 
@strawberry.type
class Query:
    @strawberry.field
    def one_week_from(self, date_input: datetime.date) -> datetime.date:
        return date_input + datetime.timedelta(weeks=1)

Custom scalars

You can create custom scalars for your schema to represent specific types in your data model. This can be helpful to let clients know what kind of data they can expect for a particular field.

To define a custom scalar you need to give it a name and functions that tell Strawberry how to serialize and deserialise the type.

For example here is a custom scalar type to represent a Base64 string:

import base64
from typing import NewType
 
import strawberry
from strawberry.schema.config import StrawberryConfig
 
Base64 = NewType("Base64", bytes)
 
 
@strawberry.type
class Query:
    @strawberry.field
    def base64(self) -> Base64:
        return Base64(b"hi")
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            Base64: strawberry.scalar(
                name="Base64",
                serialize=lambda v: base64.b64encode(v).decode("utf-8"),
                parse_value=lambda v: base64.b64decode(v.encode("utf-8")),
            )
        }
    ),
)
 
result = schema.execute_sync("{ base64 }")
 
assert result.data == {"base64": "aGk="}
Note

The Base16 , Base32 and Base64 scalar types are available in strawberry.scalars

from strawberry.scalars import Base16, Base32, Base64

Example: Custom Object Scalar

Suppose we would like to use a Pillow Image as a scalar that serializes to/from base64-encoded bytes:

import base64
from io import BytesIO
 
from PIL import Image
 
import strawberry
from strawberry.schema.config import StrawberryConfig
 
 
@strawberry.type
class Query:
    @strawberry.field
    def generate_image(self) -> Image.Image:
        # Create a simple 100x100 red image
        return Image.new("RGB", (100, 100), color="red")
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            Image.Image: strawberry.scalar(
                name="Image",
                description="A Pillow Image, serialized as base64-encoded PNG",
                serialize=lambda img: base64.b64encode(img.tobytes("png")).decode(
                    "utf-8"
                ),
                parse_value=lambda v: Image.open(BytesIO(base64.b64decode(v))),
            )
        }
    ),
)

This generates the following schema:

"""
A Pillow Image, serialized as base64-encoded PNG
"""
scalar Image
 
type Query {
  generateImage: Image!
}
query {
  generateImage
}
{
  "data": {
    "generateImage": "iVBORw0KGgoAAAANSUhEUgAAAAE..."
  }
}

Example: NewType Scalar

Suppose we would like to have a type-safe Currency scalar based on Decimal :

from decimal import Decimal
from typing import NewType
 
import strawberry
from strawberry.schema.config import StrawberryConfig
 
# Define a NewType for currency - this is a proper type that type checkers understand
Currency = NewType("Currency", Decimal)
 
 
@strawberry.type
class Query:
    @strawberry.field
    def price(self) -> Currency:
        return Currency("19.99")
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            Currency: strawberry.scalar(
                name="Currency",
                description="A monetary value with 2 decimal places",
                serialize=lambda v: str(v.quantize(Decimal("0.01"))),
                parse_value=lambda v: Currency(v).quantize(Decimal("0.01")),
            )
        }
    ),
)

This generates the following schema:

"""
A monetary value with 2 decimal places
"""
scalar Currency
 
type Query {
  price: Currency!
}
query {
  price
}
{
  "data": {
    "price": "19.99"
  }
}
Note

The JSON scalar type is available in strawberry.scalars :

from strawberry.scalars import JSON

Overriding built-in scalars

To override the behaviour of the built-in scalars, you can pass a scalar_map in your schema config.

Here is a full example of replacing the built-in DateTime scalar with one that serializes all datetimes as Unix timestamps:

from datetime import datetime, timezone
import strawberry
from strawberry.schema.config import StrawberryConfig
 
 
@strawberry.type
class Query:
    @strawberry.field
    def current_time(self) -> datetime:
        return datetime.now()
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            datetime: strawberry.scalar(
                name="DateTime",
                serialize=lambda value: int(value.timestamp()),
                parse_value=lambda value: datetime.fromtimestamp(
                    int(value), timezone.utc
                ),
            ),
        }
    ),
)
result = schema.execute_sync("{ currentTime }")
assert result.data == {"currentTime": 1628683200}

To override with a pendulum instance you’d want to serialize and parse_value like the above example. Let’s throw them in a class this time.

In addition we’ll be using the Union clause to combine possible input types. Since pendulum isn’t typed yet, we’ll have to silence mypy’s errors using # type: ignore

import pendulum
from datetime import datetime
from typing import Union
 
import strawberry
from strawberry.schema.config import StrawberryConfig
 
 
def serialize_datetime(dt: Union[pendulum.DateTime, datetime]) -> str:  # type: ignore
    try:
        return dt.isoformat()
    except ValueError:
        return dt.to_iso8601_string()  # type: ignore
 
 
def parse_datetime(value: str) -> Union[pendulum.DateTime, datetime]:  # type: ignore
    return pendulum.parse(value)  # type: ignore
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            datetime: strawberry.scalar(
                name="DateTime",
                description="A date and time",
                serialize=serialize_datetime,
                parse_value=parse_datetime,
            ),
        }
    ),
)

BigInt (64-bit integers)

Python integers have arbitrary precision (no size limit). However, the GraphQL spec limits integers to 32-bit signed values (approximately ±2 billion).

This will inevitably raise errors. Instead of using strings on the client as a workaround, you could use the following approach:

from typing import NewType, Union
 
import strawberry
from strawberry.schema.config import StrawberryConfig
 
BigInt = NewType("BigInt", int)
 
 
@strawberry.type
class Query:
    @strawberry.field
    def large_number(self) -> BigInt:
        return BigInt(9007199254740993)
 
 
schema = strawberry.Schema(
    Query,
    config=StrawberryConfig(
        scalar_map={
            BigInt: strawberry.scalar(
                name="BigInt",
                description="BigInt field",
                serialize=lambda v: int(v),
                parse_value=lambda v: str(v),
            ),
        }
    ),
)

You can adapt your schema to automatically use this scalar for all integers by adding int to the scalar_map :

Tip

Only use this override if you expect most of your integers to be 64-bit. Since most GraphQL schemas follow standardized design patterns and most clients require additional effort to handle all numbers as strings, it makes more sense to reserve BigInt for numbers that actually exceed the 32-bit limit. You can achieve this by annotating `BigInt` instead of `int` in your resolvers handling large python integers.

schema = strawberry.Schema(
    query=Query,
    mutation=Mutation,
    subscription=Subscription,
    config=StrawberryConfig(
        scalar_map={
            int: strawberry.scalar(
                name="BigInt",
                serialize=lambda v: int(v),
                parse_value=lambda v: str(v),
            ),
        }
    ),
)
Edit this page on GitHub