Pydantic support
Strawberry comes with support for Pydantic . This allows for the creation of Strawberry types from pydantic models without having to write code twice.
Here’s a basic example of how this works, let’s say we have a pydantic Model for a user, like this:
from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel
 
 
class User(BaseModel):
    id: int
    name: str
    signup_ts: Optional[datetime] = None
    friends: List[int] = [] We can create a Strawberry type by using the
strawberry.experimental.pydantic.type  decorator: 
import strawberry
 
from .models import User
 
 
@strawberry.experimental.pydantic.type(model=User)
class UserType:
    id: strawberry.auto
    name: strawberry.auto
    friends: strawberry.auto The strawberry.experimental.pydantic.type  decorator accepts a Pydantic model
and wraps a class that contains dataclass style fields with strawberry.auto  as
the type annotation. The fields marked with strawberry.auto  will inherit their
types from the Pydantic model. 
 If you want to include all of the fields from your Pydantic model, you can
instead pass all_fields=True  to the decorator. 
-> Note Care should be taken to avoid accidentally exposing fields that -> weren’t meant to be exposed on an API using this feature.
import strawberry
 
from .models import User
 
 
@strawberry.experimental.pydantic.type(model=User, all_fields=True)
class UserType:
    pass By default, computed fields are excluded. To also include all computed fields
pass include_computed=True  to the decorator. 
import strawberry
 
from .models import User
 
 
@strawberry.experimental.pydantic.type(
    model=User, all_fields=True, include_computed=True
)
class UserType:
    passInput types
 Input types are similar to types; we can create one by using the
strawberry.experimental.pydantic.input  decorator: 
import strawberry
 
from .models import User
 
 
@strawberry.experimental.pydantic.input(model=User)
class UserInput:
    id: strawberry.auto
    name: strawberry.auto
    friends: strawberry.autoInterface types
 Interface types are similar to normal types; we can create one by using the
strawberry.experimental.pydantic.interface  decorator: 
import strawberry
from pydantic import BaseModel
from typing import List
 
 
# pydantic types
class User(BaseModel):
    id: int
    name: str
 
 
class NormalUser(User):
    friends: List[int] = []
 
 
class AdminUser(User):
    role: int
 
 
# strawberry types
@strawberry.experimental.pydantic.interface(model=User)
class UserType:
    id: strawberry.auto
    name: strawberry.auto
 
 
@strawberry.experimental.pydantic.type(model=NormalUser)
class NormalUserType(UserType):  # note the base class
    friends: strawberry.auto
 
 
@strawberry.experimental.pydantic.type(model=AdminUser)
class AdminUserType(UserType):
    role: strawberry.autoError Types
In addition to object types and input types, Strawberry allows you to create "error types". You can use these error types to have a typed representation of Pydantic errors in GraphQL. Let's see an example:
from pydantic import BaseModel, constr
import strawberry
 
 
class User(BaseModel):
    id: int
    name: constr(min_length=2)
    signup_ts: Optional[datetime] = None
    friends: List[int] = []
 
 
@strawberry.experimental.pydantic.error_type(model=User)
class UserError:
    id: strawberry.auto
    name: strawberry.auto
    friends: strawberry.autotype UserError {
  id: [String!]
  name: [String!]
  friends: [[String!]]
}where each field will hold a list of error messages
Extending types
You can use the usual Strawberry syntax to add additional new fields to the GraphQL type that aren’t defined in the pydantic model
import strawberry
from pydantic import BaseModel
 
from .models import User
 
 
class User(BaseModel):
    id: int
    name: str
 
 
@strawberry.experimental.pydantic.type(model=User)
class User:
    id: strawberry.auto
    name: strawberry.auto
    age: inttype User {
  id: Int!
  name: String!
  age: Int!
}Converting types
The generated types won’t run any pydantic validation. This is to prevent confusion when extending types and also to be able to run validation exactly where it is needed.
 To convert a Pydantic instance to a Strawberry instance you can use
from_pydantic  on the Strawberry type: 
import strawberry
from typing import List, Optional
from pydantic import BaseModel
 
 
class User(BaseModel):
    id: int
    name: str
 
 
@strawberry.experimental.pydantic.type(model=User)
class UserType:
    id: strawberry.auto
    name: strawberry.auto
 
 
instance = User(id="123", name="Jake")
 
data = UserType.from_pydantic(instance) If your Strawberry type includes additional fields that aren't defined in the
pydantic model, you will need to use the extra  parameter of from_pydantic  to
specify the values to assign to them. 
import strawberry
from typing import List, Optional
from pydantic import BaseModel
 
 
class User(BaseModel):
    id: int
    name: str
 
 
@strawberry.experimental.pydantic.type(model=User)
class UserType:
    id: strawberry.auto
    name: strawberry.auto
    age: int
 
 
instance = User(id="123", name="Jake")
 
data = UserType.from_pydantic(instance, extra={"age": 10}) The data dictionary structure follows the structure of your data -- if you have
a list of User , you should send an extra  that is the list of User  with the
missing data (in this case, age ). 
 You don’t need to send all fields; data from the model is used first and then
the extra  parameter is used to fill in any additional missing data. 
 To convert a Strawberry instance to a pydantic instance and trigger validation,
you can use to_pydantic  on the Strawberry instance: 
import strawberry
from typing import List, Optional
from pydantic import BaseModel
 
 
class User(BaseModel):
    id: int
    name: str
 
 
@strawberry.experimental.pydantic.input(model=User)
class UserInput:
    id: strawberry.auto
    name: strawberry.auto
 
 
input_data = UserInput(id="abc", name="Jake")
 
# this will run pydantic's validation
instance = input_data.to_pydantic()Constrained types
Strawberry supports pydantic constrained types . Note that constraint is not enforced in the graphql type. Thus, we recommend always working on the pydantic type such that the validation is enforced.
from pydantic import BaseModel, conlist
import strawberry
 
 
class Example(BaseModel):
    friends: conlist(str, min_items=1)
 
 
@strawberry.experimental.pydantic.input(model=Example, all_fields=True)
class ExampleGQL: ...
 
 
@strawberry.type
class Query:
    @strawberry.field()
    def test(self, example: ExampleGQL) -> None:
        # friends may be an empty list here
        print(example.friends)
        # calling to_pydantic() runs the validation and raises
        # an error if friends is empty
        print(example.to_pydantic().friends)
 
 
schema = strawberry.Schema(query=Query)input ExampleGQL {
  friends: [String!]!
}
 
type Query {
  test(example: ExampleGQL!): Void
}  Classes with __get_validators__   
 Pydantic BaseModels may define a custom type with
__get_validators__  
logic. You will need to add a scalar type and add the mapping to the
scalar_overrides  argument in the Schema class. 
import strawberry
from pydantic import BaseModel
 
 
class MyCustomType:
    @classmethod
    def __get_validators__(cls):
        yield cls.validate
 
    @classmethod
    def validate(cls, v):
        return MyCustomType()
 
 
class Example(BaseModel):
    custom: MyCustomType
 
 
@strawberry.experimental.pydantic.type(model=Example, all_fields=True)
class ExampleGQL: ...
 
 
MyScalarType = strawberry.scalar(
    MyCustomType,
    # or another function describing how to represent MyCustomType in the response
    serialize=str,
    parse_value=lambda v: MyCustomType(),
)
 
 
@strawberry.type
class Query:
    @strawberry.field()
    def test(self) -> ExampleGQL:
        return Example(custom=MyCustomType())
 
 
# Tells strawberry to convert MyCustomType into MyScalarType
schema = strawberry.Schema(query=Query, scalar_overrides={MyCustomType: MyScalarType})Custom Conversion Logic
Sometimes you might not want to translate your Pydantic model into Strawberry using the logic provided in the library. Sometimes types in Pydantic are unrepresentable in GraphQL (such as unions of scalar values) or structural changes are needed before the data is exposed in the schema. In these cases, there are two methods you can use to control the conversion logic more directly.
 First, you can use a different type annotation in your Strawberry model for a
field type instead of using strawberry.auto  to choose an equivalent type. This
allows you to do things like converting values to custom scalar types or
converting between basic types. Strawberry will call the constructor of the new
type annotation with the field value as input, so this only works when
conversion is possible through a constructor. 
import base64
import strawberry
from pydantic import BaseModel
from typing import Union, NewType
 
 
class User(BaseModel):
    id: Union[int, str]  # Not representable in GraphQL
    hash: bytes
 
 
Base64 = strawberry.scalar(
    NewType("Base64", bytes),
    serialize=lambda v: base64.b64encode(v).decode("utf-8"),
    parse_value=lambda v: base64.b64decode(v.encode("utf-8")),
)
 
 
@strawberry.experimental.pydantic.type(model=User)
class UserType:
    id: str  # Serialize int values to strings
    hash: Base64  # Use a custom scalar to serialize values
 
 
@strawberry.type
class Query:
    @strawberry.field
    def test() -> UserType:
        return UserType.from_pydantic(User(id=123, hash=b"abcd"))
 
 
schema = strawberry.Schema(query=Query)
 
print(schema.execute_sync("query { test { id, hash } }").data)
# {"test": {"id": "123", "hash": "YWJjZA=="}} The other, more comprehensive, method for modifying the conversion logic is to
provide custom implementations of from_pydantic  and to_pydantic . This allows
you full control over the conversion process and bypasses Strawberry’s built in
conversion rules completely, while still registering the new type as a Pydantic
conversion type so it can be referenced in other models. 
 This is useful when you need to represent structures that are very different
from GraphQL standards, without changing the underlying Pydantic model. An
example would be a use case that uses a dict  field to store some
semi-structured content, which is difficult to represent in GraphQL’s strict
type system. 
import enum
import dataclasses
import strawberry
from pydantic import BaseModel
from typing import Any, Dict, Optional
 
 
class ContentType(enum.Enum):
    NAME = "name"
    DESCRIPTION = "description"
 
 
class User(BaseModel):
    id: str
    content: Dict[ContentType, str]
 
 
@strawberry.experimental.pydantic.type(model=User)
class UserType:
    id: strawberry.auto
    # Flatten the content dict into specific fields in the query
    content_name: Optional[str] = None
    content_description: Optional[str] = None
 
    @staticmethod
    def from_pydantic(instance: User, extra: Dict[str, Any] = None) -> "UserType":
        data = instance.dict()
        content = data.pop("content")
        data.update({f"content_{k.value}": v for k, v in content.items()})
        return UserType(**data)
 
    def to_pydantic(self) -> User:
        data = dataclasses.asdict(self)
 
        # Pull out the content_* fields into a dict
        content = {}
        for enum_member in ContentType:
            key = f"content_{enum_member.value}"
            if data.get(key) is not None:
                content[enum_member.value] = data.pop(key)
        return User(content=content, **data)
 
 
user = User(id="abc", content={ContentType.NAME: "Bob"})
print(UserType.from_pydantic(user))
# UserType(id='abc', content_name='Bob', content_description=None)
 
user_type = UserType(id="abc", content_name="Bob", content_description=None)
print(user_type.to_pydantic())
# id='abc' content={<ContentType.NAME: 'name'>: 'Bob'}